
An Argument
for Continuous
Security Testing
Forming the foundation of your
security validation program

White Paperpreludesecurity.com

When completing a Ph.D. program, doctoral candidates are required
to submit a thesis argument. The argument represents a central
claim put forward, as the foundation of their research. It serves
as the main focus or guiding principle, often representing the last
few years of the student’s work. The argument typically presents a
unique perspective, theory, hypothesis, or solution to a problem that
has no universally-accepted answer.

Throughout the thesis, the doctoral candidate will present and discuss
their findings, analyze the data, and provide arguments and evidence
to support or refute their initial thesis argument. The conclusion of the
thesis should summarize the main findings and evaluate the extent
to which the original argument has been successfully addressed or
resolved.

Here, we will follow a similar, albeit briefer, approach to introduce
continuous security testing (CST) as a greater topic. The argument we
will be making today is this: continuous security testing should act as
the foundation of your security validation program.

Introduction

Competitive review

Discussion

Conclusion

Thesis statement

Outline

01 A fictitious example

02 Background information

 02 Why you need security testing

03 Research problem

 03 Why your testing should be continuous

04 Thesis

05 Promise statement
07 Defensive interoperability
09 Scale
12 Transparency

13 Address counter arguments

18 Limitations

19 Implications

20 Main findings

20 Application to the thesis

21 Advancing your continuous security testing...

21 About David Hunt

22 About Prelude Security

01

02

03

04

05

A fictitious example

Let’s say it’s your first day on the job.
You just accepted a post as the Chief
Information Security Officer (CISO) of
a mid-sized basket-weaving business,
a thriving enterprise in our fictional
world. Your new company, Baskets For
All, employs hundreds of basket-weavers,
two call centers, a robust sales team,
a team of designers and engineers,
a research and development lab, an IT
department, and an executive team.
What is the first thing you do?

You probably start by reviewing your
security posture. What assets are in the
inventory? What controls are in place?
What is the composition of the IT team?
What processes are in place for incident
response and vulnerability management?

This discovery will provide a picture of
what exists today. Let’s say it uncovers:

• 2,500 workstations / laptops;
a mixture of Windows and MacOS

• 300 Linux virtual machines
running inside AWS

• A dynamic Kubernetes cluster,
also deployed in AWS, consisting
of up to 50 containers

You see that all workstations and virtual
machines are running the latest in-fashion
Endpoint Detection & Response (EDR)
agent, along with a SIEM logging agent.
The EDR isn’t running on the containers,
but they are running the logging agent.
The containers are especially locked down,
with limited system binaries installed.
Inside of AWS, you are running an off-the-
shelf Intrusion Detection System (IDS),
for inspecting network traffic, and a Web
Application Firewall (WAF) for robust
firewall protection.

When you went over the security processes,
you learned that the company contracts
out for quarterly red team assessments.
There is also a top-of-the-line vulnerability
scanner that runs daily and a process for
resolving any discovered vulnerabilities
that have a CVSS score of above 7.0.
Digging through the numbers, you see
that 98% of vulnerabilities are patched
within 72 hours - an astonishing statistic!

But you also know that Baskets For All
just endured a cyber attack, which was
the reason they hired you in the first
place. With all of this security, how could
a breach have happened?

01 Introduction

01An Argument for Continuous Security Testing

Background information
Why you need security testing

A security strategy should revolve around
“the endpoint”. An endpoint could be a
laptop, workstation, server, container,
virtual machine, traffic light, camera, WiFi-
enabled toothbrush,... basically, if the
device is networked and runs code -
it’s an endpoint.

Defenses, such as EDR, are installed on
endpoints to prevent malicious activity,
whether static or dynamic. This is especially
important on user-controlled devices, such
as laptops. As is often stated, people are
the biggest vulnerability to any organization
- so running a protective agent 24x7 on
their computers is a great first-layer defense.

This poses two central problems so far:

1. Endpoint defenses aren’t
compatible with all endpoint
operating systems

2. Endpoint defenses don’t work
as expected all of the time

For the first problem, you can look at any
environment and explicitly determine
which devices match the profile of a
supported endpoint defense. In the case
of Baskets For All, all but the containers
had supported EDR agents running.
This is a pretty common case to encounter
in the real world. But because of the
straightforward solution - install EDR on all
supported endpoints and accept the risk on
the others - this won’t be the focal point in
this white paper.

For the second problem, the only solution
is to validate your defensive efficacy
through security testing.

Security testing is an afterthought. Most
organizations establish their people. Their
product. Their technology stack. Their
cyber defenses. And last and intentionally
least (usually due to compliance require-
ments) their security validation process.
Security is thought of as a sunk cost - the
cost of doing business - with security
testing at the bottom of the barrel.

Over the years, security testing has seen
a progression of strategies. Other writings
have covered the most popular of the
bunch, from pentesting to Breach and
Attack Simulation (BAS). Each has brought
its fair share of pros to the table - and a
measurable number of cons. While much
broader in overall scope, at its core
security testing aims to understand
if your defenses work.

 1.

 2.

02An Argument for Continuous Security Testing

Research problem
Why your testing should be continuous

No matter the strategy, security testing has
always been point-in-time. When you run a
security assessment, you plan, execute and
report on the results. All of these are very
timeline-centric: there is a distinct start
and end to each phase of this process.

The problem is that technology moves
too fast.

An EDR, and the operating system it’s
installed on, is under constant iteration.
The programs are being updated. Features
are being added. The pace of software
development is that of a sprint, not a
marathon. Each change brings the risk of
a new vulnerability or a blind spot in the
defensive agent, which hasn’t created a
signature for a new malicious sequence
of behaviors.

This gets even worse at scale, as changes
to the environment bring additional
variables to the table. A laptop may move
subnets, as it (physically) moves from the
corporate office to the home office. Or a
mass software installation directed from a
Mobile Device Management (MDM) portal
may not complete the installation of all
targeted machines, leaving some endpoints
in an awkward state.

All of this means security testing has to
pick up the pace. It needs to graduate from
point-in-time to continuous.

Consider a convenience store. The store is
small in surface area, maybe a few hundred
square feet on average. But protecting
it isn’t foolproof; there’s a margin of
error involved.

It’s not that there are no defenses. One
could argue that the defenses are overkill
for the environment and the “crown jewels”
being protected. The store is armed with a
security system, including active cameras
24/7 and alarms for when it’s locked up
at night. And of course, there’s a cashier
situated right next to the door.

If this security were applied to a computer
network, you’d feel pretty good about it:
the cameras are the event logs, detecting
all activity happening in the space. The
alarms represent the EDR, detecting and
responding to malicious actions. The
cashier is the SOC, a human-in-the-loop
offering contextual assistance.

But the convenience store can still be
robbed. Despite the restricted space and
enhanced protections, there is no physical
way - that is also justifiable cost-wise - for
the store to eliminate the risk completely.
Shoplifters will simply fly under the radar.

If this is the case for a single convenience
store with a single physical location - imagine
how much more true it is on the Internet,
where every person on the planet could
walk through your door at the same time.

03An Argument for Continuous Security Testing

02 Thesis statement

Continuous security testing
should form the base of any
security validation strategy.

The rest of this white paper will outline the
argument for this statement. While other
forms of validation can play a supporting
role, if you can only do one form of testing,
CST should be it.

04An Argument for Continuous Security Testing

The closest we’ve come to CST today is BAS, described in depth elsewhere. BAS, as an industry,
promises to automate the value of a red team through a solution with less efficacy but one that
can be run every day.

We’re not here to argue the value of BAS, or whether it fulfills its promise, but let’s contrast it with
CST, in relation to this thesis argument.

03 Competitive review

Promise statement

The promise of CST is to “know with
certainty if your defenses will protect you
against emerging threats.” This is the most
telling departure from the BAS approach.
Ask yourself this: does your red team tell
you with certainty that your defenses will
protect you from emerging threats?
The answer is most definitely no, as the
focus of red teams is too narrow and the
scale on which they operate too low to
answer a question this grandiose. Even if
a BAS solution were to fulfill its promise
- which is to automate a red team - to full
efficacy, it wouldn’t answer the question
CST addresses.

If your goal is to have complete security,
and we can agree that the endpoint is
where you should focus, then it’s logical
to put your defensive energy (EDR) on the
endpoints. Therefore, logic would dictate
that security testing should focus on the
value and efficacy of that defensive solution,
which is what CST is purpose-built to do.

Red teams, and the automation of their
processes, would act as a cherry on top;
they should be part of an advanced security
stack instead of a foundational requirement
for everyone.

05An Argument for Continuous Security Testing

Everything in security is testing

I often say that cybersecurity is actually composed of around 15 sub-industries. There is offensive
security, the topic of this book. But there is also incident response, malware analysis, blue teaming,
purple teaming, SOC, attack surface reduction, cyber threat intelligence, … and several more.

Most sub-industries are actually a form of security testing.

Consider malware analysis. The painfully methodical process of working JUMP statement by JUMP
statement through the assembly code of a binary is a form of testing. The goal is to extract the
behaviors of a specific piece of malware in order to signature it for a defense to catch it, which in turn
must be validated (for example, through a YARA rule).

Each sub-industry of cybersecurity exists to fuel one of two engines: defense or validation. The effort
is either actively defending an endpoint, or it is validating that the defense is working.

You might say, “Ah, but testing from the
endpoint is not enough! I must also test the
network, my detection engineering rules,
my VPN, my…”.

But let’s test that theory a bit.

Consider two scenarios:

1. If your Web Application
Firewall (WAF) works 100
percent, are you protected?

2. If your WAF works 0 percent
but every endpoint in your
environment stops all malicious
behaviors - including insider
threats - are you protected?

Which scenario is correct? The second one,
of course.

Let’s make it more extreme. Let’s say every
endpoint in your environment has every
known vulnerability (whoa!) - but it still
prevents all exploit attempts and blocks all
malicious behaviors. Are you still protected?
The answer is, amazingly, still yes.

What does this tell you? Endpoints are
the center of your infrastructure. If you
can protect every individual one, you
have achieved a level of security in the
100th percentile.

This doesn’t mean you should drop
your WAF. You should still have one and
configure it reasonably - but it’s not as
important as your endpoint defense.
A WAF is remote and disconnected from
the endpoint, so it is a secondary concern.

 1.

 2.

06An Argument for Continuous Security Testing

Defensive interoperability

Remember the hot wash meeting, where a
red or purple team goes over the findings of
their security assessment and provides the
defenders with a list of things to fix? BAS
accelerates this by injecting automation.
Instead of a point-in-time approach, BAS
aims to generate and keep this list of
“honey-do’s” always up-to-date.

But that hardly solves the problem.

In the mid-2010’s, this seemed like
the right direction for security testing;
the concepts of modeling, intelligence
and scale had yet to be addressed. The
automatic honey-do list overlooked one
essential factor, which is easy to pick on
in retrospect: security teams are strapped
for resources already and by giving them
an endless number of new things to do,
you are effectively creating hopelessness.
Teams avoid tools that do this because, as
security is already considered a sunk cost,
does someone really want a solution that
has no practical end state? It’s almost like
running a marathon where the finish line
keeps being pushed back 5 miles. There
has to be an end state.

Humans need a finish line or a goal to shoot
for because it provides a sense of purpose,
motivation, and direction. Having a clear
objective or endpoint gives individuals
something to strive for and can drive them
to work harder, push their limits, and
achieve their desired outcomes.

CST adopts the view that - for security
testing to be workable - it needs
interoperability with the defensive tools
running on the endpoint. This takes the
form of self-healing where any attack
scenario that uncovers an unprotected
behavioral sequence, or an undetected file
signature, is automatically sent to the
EDR for resolution.

A core CST belief is that customers
shouldn’t bear the responsibility of fixing/
securing broken promises from defensive
vendors. For example, if an EDR promises
to stop all breaches - and a security
test finds an attack sequence that isn’t
prevented - the responsibility to fix the
issue is on the vendor, not the customer
who purchased it. And this should
happen automatically, preferably in
a timely manner.

The industry has accepted the opposite
for far too long.

Multiple, often overlapping, endpoint
defenses are purchased - more as an
insurance policy than to boost the odds
of protection in a breach. And even then,
companies which don’t specialize in
cybersecurity are staffing hundreds of
security professionals. We should ask
ourselves, exactly why does a company
that specializes in home improvement
projects employ a threat intelligence unit?

07An Argument for Continuous Security Testing

We accept that our defensive vendors aren’t working as expected - but we still have
a business to run - so we bear the responsibility. Why don’t we stop purchasing these
tools, until they provide transparency into their efficacy? If we do, when we inevitably get
breached we have little political fallback. Our purchased tools act as an insurance policy
for our own jobs. We can effectively say to the board of directors: but we bought all these
tools! Or if we were trying to get out of a personal relationship: it’s them, not us.

Security testing should accomplish two things:

1. Establish a shared reality about the security posture of an organization.
Everyone, from security engineers to the board of directors should sing from
the same hymn book.

2. Automatically resolve any security issues found. Manual resolution of security
bugs is quickly becoming a legacy process. Testing needs to both find issues
and engage the defense on a resolution.

 1.

 2.

08An Argument for Continuous Security Testing

Scale

As BAS solutions are designed to automate
a red or purple team, they are naturally
confined to the same scope as their manual
counterparts: testing on a small n-size of
development endpoints. The results that
follow are extrapolated to the environment
as a whole, as a way to reduce the risks

that would otherwise occur from running
the unstable TTPs that offsec teams pull
out of their hats. But as pointed out in other
content, extrapolation is not an effective
way to measure the efficacy of your controls
at scale because, by definition, it is not
testing your controls at scale.

Development or production?

When you red team, what you’re really doing is uncovering your unknown security holes.
Red teaming is, by definition, the process of playing devil’s advocate. So you’re poking and
prodding your systems in unintended ways - the same ways an adversary does - hoping to
uncover a weakness.

This doesn’t come without risk. If you poke your system too hard, it may topple over.
If you do this in production, your customers may feel the weight of the fall.

But consider this: if you get attacked in the middle of the night by an attacker using the
same techniques as your internal red team, you’ll still topple over, except this time you
won’t have control. Worse, you may have compromised your customers. In other words,
by trying not to topple your system, you may be in for an even bigger fall.

Most organizations have multiple environments. There is a development environment for
engineers to build solutions. The QA environment for testers. The staging environment to
mirror production, just in case you need it. And finally, the production environment to
serve the public.

“If my staging environment mirrors production, isn’t that the same as testing prod?”

If you find yourself asking this question, consider if your staging environment is exactly
the same as production. Your staging environment is likely a test bed to flush out bugs that
are hard to debug in production. Most staging environments run the same software as their
production counterparts but the scale, network rules and infrastructure is far different,
to lessen the cost.

09An Argument for Continuous Security Testing

Why do you think organizations with top-dollar defensive tools get hacked every day?

You should expect quality systems at your organization. Ones that do not topple over
during a red team assessment. Your systems should be resilient to testing and get
stronger over time. Your engineers will respect this and you’ll be doing more long term
good - for you and your customers.

When using CST against a production environment, the harmful effects of a real adversary
are not conducted. There are several safety precautions taken, such as not encrypting
files during a ransomware attack but instead copying a file and encrypting the copy, to
prove it is either possible or not without defensive prevention.

Now for the question of autonomous systems.

Manual red teams rarely get posed the ‘can I do this in production?’ question. People
are wary of automated processes, especially those built for offensive security. But this
reluctance will change. It will take time. It will take effort. Most of all, it will take reforming
how you think about your security.

Red teaming is great but the time constraint and cost make it unachievable for most
companies. For those remaining, running several red team exercises a year just isn’t
enough. It’s better than none, but continuous testing is better. And the future. The only
way to get there is to embrace autonomous red team software.

Okay, you get it. You’re technical, you see this as the optimal strategy. But how do you
get your manager, the one who takes the blame when things go south, to see this as
well?

Move into the area slowly. Instead of going full-throttle and deploying an autonomous
testing solution into your network, use a tool that allows you to have full manual
control. Do your first several security assessments without turning on any of the
autonomous bells and whistles. Plan them in small doses. Not every assessment needs
to be a full-blown endeavor. Then, over time, it will become easier to introduce autonomy
as you build trust, both with your organization and with your tool of choice.

In the end, choosing autonomous testing means choosing the future. Your attackers are
using them for their efficiency in hacking you, so you should be prepared to defend
yourself with a dose of autonomy yourself.

10An Argument for Continuous Security Testing

In contrast, CST is designed to run on
production, against every endpoint you
have. This provides exact observability
around defensive efficacy, bypassing the
sharp edge cases of the extrapolated
approach completely.

Furthermore, CST is designed to run
where endpoint defenses cannot. Earlier,
I mentioned two central problems that
running an EDR can present:

1. Endpoint defenses aren’t
compatible with all endpoint
operating systems

2. Endpoint defenses don’t work
as expected all of the time

We addressed the second but mostly
skipped past the first.

The fact that endpoint defenses are not
compatible with all endpoint operating
systems doesn’t mean you should convert
all of your containers to Windows servers
or downgrade your software to match the
limitations of a vendor. In fact, it’s quite
the opposite.

CISA, the U.S. government agency tasked
with building a more secure, resilient
infrastructure for the future, writes on
their site:

“When security experts give cybersecurity
advice, they usually assume you are only
willing to make small changes to your IT
infrastructure. But what would you do if you
could reshape your IT infrastructure? Some
organizations have made more aggressive
changes to their IT systems in order to

reduce their “attack surface.” In some
cases, they have been able to all
but eliminate (YES, WE SAID ELIMINATE!)
the possibility of falling victim to
phishing attacks.”

They recommend doing this through a
replacement of insecure devices with
secure ones:

“While all operating system vendors work
to continuously improve the security of their
products, two stand out as being “secure by
design,” specifically, Chromebooks and iOS
devices like iPads.

Some organizations have migrated some
or all their staff to use Chromebooks and
iPads. As a result, they have removed a
great deal of “attack surface,” which in turn
makes it much harder for attackers to get
a foothold. Even if an attacker were able to
find a foothold on those systems as part of
a ransomware attack, the data primarily
lives in a secure cloud service, reducing the
severity of the attack.”

The problem is this shift is too gargantuan
a task for most organizations. In fact,
the larger the organization, the more
challenging it is to heed this advice.

This is where an EDR comes in handy. If
swapping out the operating systems on
your endpoints is a 5 year plan, you need
an actionable strategy for today. An EDR
running on your endpoints can adequately
protect against most off-the-shelf attacks
- but only if correctly configured and
continuously validated.

More on secure devices later.

 1.

 2.

11An Argument for Continuous Security Testing

Transparency

Enterprise security solutions, BAS included,
enjoy hiding behind a veil of secrecy.
The industry as a whole has succeeded
at using this technique to “gate” people
who don’t understand the complex world
of cybersecurity. You can see this most
clearly by analyzing what is open vs what is
closed in any particular solution. If every
component in the product is closed-source -
there is no visibility into the inner workings
of the system. It’s a black box.

Aside from the lack of transparency,
customers of these solutions face another
downside: if they switch vendors they lose
access to their prior work. For example,
if I purchased a BAS testing solution last
year and my internal security team uses it
to write 100 custom tests - specific to my
company’s use case - if I leave the vendor
in search of one with a richer feature set,
I may lose my custom work. This lock-in
effect means I would have to start all over
again with the new vendor.

In CST, the philosophy is that all code
running on your endpoints must be open
whereas the code running on a vendor’s
side can be open or closed.

This simple philosophy empowers
customers to have complete visibility
and enhanced expectations. Want to dig
deeply into the code of a test or endpoint
agent? Go for it. Want to pack up your
tests and move to any CST solution? Great!
Tests should be viewed as a commodity,
forcing testing solutions to stand out for
proprietary feature sets that sit within
their closed-source offering, such as
intelligent scheduling of tests or a rich
data visualization experience.

To read more...

I have documented methodology and the results from a real continuous security
assessment. To read these, and the rest of Irreducibly Complex Systems, head to
https://www.yellowduckpublishing.com and pick up a copy today.

12An Argument for Continuous Security Testing

https://www.yellowduckpublishing.com/books.html?title=icsd

04 Discussion

Address counter arguments

While I feel comfortable with the confirmation of the thesis presented here, there are
counter arguments worth considering. I will try to fairly assess the primary arguments.

Only humans can accurately
perform a security assessment

The argument here is that only humans can
contextualize high-risk scenarios during a
security assessment, as a computer cannot
balance its effectiveness with the odds
of being detected, for any given action.
This is mostly true, if comparing apples-
to-apples. However, our thesis does not
state that CST should replace a manual red
team, only that it should be the foundation
of a validation strategy. Building upon
this strategy with manual red teaming
will bolster the security posture of
any organization.

People won’t deploy another agent
across their infrastructure

This is not an argument against the concept
of CST but more so the practical ability to
get it off the ground. CST institutes several
architectural designs to alleviate agent-
fatigue and make the process as easy as
possible. Agents, called probes, are usually
only a few kilobytes and can be installed
with a single command. They also run
as regular users, not administrators, and
use a non-measurable amount of system
resources. Ultimately, the value proposition
of CST has to outweigh the friction of
deploying agents, regardless of how
easy it is, and only the end user can
make that determination.

13An Argument for Continuous Security Testing

The agent needs to be part
of the security assessment

CST makes a departure from other security
strategies, such as red teaming or BAS,
which dictate the agent running the tests
should be part of the assessment. This
would mean the agent needs to be evasive
and avoid detection and quarantining
by an EDR. This naturally limits the
number of agents that can be active in an
environment, as otherwise the presence
of a C2 network would be easily squashed
by the defense. At first glance, this would
disqualify CST as a valid testing strategy;
but CST instead considers evasive agents
as an advanced manual practice.

Probes are encouraged to be installed
as a service and are allowed to run -
unimpeded. Probes spin each test into
a separate process, which is what the
defensive reaction is judged against. This
allows CST to run at high-scale: the probe
is guaranteed to be active and only the
child processes can be quarantined and
evaluated. This separation allows the
probe to monitor the defensive reaction to
a specific sequence of behaviors versus the
probe itself getting signatured based simply
on its network activity or static state.

You can run tests on a small
number of endpoints

Hopefully, the thesis argument in this white
paper was enough to knock this fallacy
down. Small variations in the behavior of
tests or the state of the computer (or larger
infrastructure) can create variations in
how endpoint defenses react. This can be
demonstrated a number of ways, including
an example from previous writings. In
short, I demonstrated a popular strategy of
raising CPU usage on an endpoint to force
an EDR to drop packets, as it attempts to
safeguard against using too many system
resources. This built-in safety mechanism
has many variations, some known but
many unknown (due to the complexity and
closed-source nature of endpoint defenses;
some EDR products contain several million
lines of code).

If you want to achieve the CST promise,
know with certainty if your defenses will
protect you from emerging threats, you
simply need to test on all your endpoints.

14An Argument for Continuous Security Testing

A test implementation can
be tweaked to evade the defense

This argument carries the most weight -
and most testing strategies squirm when
trying to answer it. Working at MITRE,
while ATT&CK was gaining prominence,
one thing stood out about the purple
teams embracing it: they treated the
matrix like a Bingo card. Their goal was
to put a green (protected) dot on each
one of the technique boxes. In fact, I
commonly refer to this as “ATT&CK Bingo”!

The ATT&CK matrix consists of tactic
columns and technique rows. The tactic
columns represent the high-level objectives
or goals of an attacker. The technique rows
provide detailed information about the
specific methods employed by attackers
within each tactic.

ATT&CK intentionally veers away from
including the “P” (from TTP) into the
matrix because of the infinite number
of procedural variations existing within
a technique. This didn’t stop purple
teams from assuming that if they could
protect against a single procedure in a
technique, they were protected from
the entire technique. This is, of course, a
flawed attempt to display protection in a
quantitative way - but it should highlight
just how hard the problem is.

Does this make you feel safer?

15An Argument for Continuous Security Testing

CST tries to tackle this through constant
variation. By running a never-ending
supply of tests, every day, and across all
endpoints, the idea is you will eventually
run a statistically significant number of
variations. This process, not dissimilar to
the Law of Large Numbers (which states
that as the number of independent trials
or observations increases, the average

of those outcomes will converge to the
expected value or true probability of the
event), attempts to provide a quantitative
numerator to a problem with an infinite
denominator.

This is not without limitations, which will
be covered later in the next subsection.

You can run security tests without
being on the endpoint

This is a favorite argument from the world
of “agentless” solutions, which scan
endpoints from the outside instead of
running an internal process on each.

For example, an agentless antivirus
solution utilizes network-based scanning
techniques to inspect incoming and
outgoing traffic without requiring software
agents to be installed on every endpoint.
Similarly, agentless vulnerability scanners
assess the security posture of systems
by utilizing protocols like SNMP (Simple
Network Management Protocol) or SSH
(Secure Shell) to collect information about
the target devices.

While agentless solutions offer benefits
such as simplified deployment and reduced
resource consumption, they have a specific
limitation: they rely entirely on the
accessibility of target systems. Endpoints
run firewalls and other protective measures
to thwart introspection from outside
processes, limiting the reach of
agentless solutions.

This leaves them with a read-only vantage
point from the perimeter of a device, which
can be useful in vulnerability management
or asset inventory, but quite impossible
to fulfill the CST promise to know with
certainty if your defenses will protect you
against emerging threats.

16An Argument for Continuous Security Testing

CST does not cover advanced
security scenarios

A common argument against automated
solutions is that they don’t provide
coverage against complex, multi-stage
attack scenarios. The most common
example is dumping credentials on a
computer and attempting to use the
discovered passwords to laterally move
to another endpoint, where the exercise
can be repeated until exhaustion.

This sequence of behaviors is better
served for manual red team assessments
or the small n-size of BAS.

The reason is simple: these scenarios are
about information-gathering, not testing
the efficacy of the defense. A valid CST test
may conduct this same multi-stage attack
but it will stop short of invoking a new probe
on a remote endpoint. Instead, it will dump
credentials and use those credentials to
test whether the defense stops it from
trying lateral movement.

CST is not concerned with building an
attack graph of all possible network hops
from one machine to another but instead -
per endpoint - reports whether the local
defense can stop the behavior when induced.

The same analogy applies to vulnerabilities:
it’s not enough to know an endpoint has
a vulnerability - you need to know if that
vulnerability is exploitable. An EDR is
capable of blocking exploit attempts, which
is the reason you have it. An unexploitable
vulnerability is the same as a lateral
movement sequence that cannot be
completed due to defensive interference -
it’s theoretical.

17An Argument for Continuous Security Testing

Limitations

Like most solutions, CST is not a silver-
bullet. It comes with limitations. We
covered one in the previous section, “A test
implementation can be tweaked to evade
the defense”, which is less a limitation
on the approach CST takes and more a
limitation on security validation as a whole.
I call this the “many variations problem”.
CST tries to neuter this limitation through
probabilities but that, by definition, is not
an iron-clad approach, only a best-effort.

Another limitation falling under this line
of reasoning is the expansive surface area
of an endpoint. This is the focus of other
content, so I will be brief here, but it goes
like this: common operating systems
provide the user with a tremendous
amount of control and no clear boundaries
between processes, applications, memory
and other OS-level components. This
combination of factors means the endpoint
has many targetable attack vectors - or a
very wide surface area.

Combining the wide surface area with an
unpredictable user behind the keyboard
makes defending these endpoints difficult.
EDR’s must account for the innumerable
technical sequences possible on the device
while simultaneously monitoring how a
user behaves on it. The hard part comes
when trying to separate the malicious
sequences from the sea of benign ones, a
true needle in a haystack scenario.

Testing strategies, like CST, are great at
poking holes in defenses because of this
problem. It is a defensive limitation, not
a testing one.

However, it’s the duty of CST to accurately
- and continuously - rediscover this
limitation as applied to emerging threats
and autonomously resolve them. Defenses
have been dealt a tough hand, trying to
detect and prevent malicious activity
across such an expansive surface area
(made more difficult by having limited
system resources to expend on the device).
The best approach you can take is to
establish an automated cat-and-mouse
testing system where issues are found -
and fixed - automatically.

Reducing surface area by changing your
underlying operating systems is the
ultimate solution - a topic I’ve written
about extensively.

18An Argument for Continuous Security Testing

https://www.preludesecurity.com/blog/coding-in-a-walled-garden-adjusting-to-a-more-secure-work-environment
https://www.preludesecurity.com/blog/coding-in-a-walled-garden-adjusting-to-a-more-secure-work-environment

Establish a shared reality about the
security posture of the organization

Everyone, from the security engineers
to the board of directors, should give
the same answer when prompted to the
question, how secure are we? Today,
if you ask ten security engineers this
question - inside the same organization -
you’ll get a skew of answers. And asking
the chair of the board, you’ll probably get
a blank stare.

This is because security test results have
historically required context from an
engineer. Since all other testing strategies
require an extrapolation step, engineers
have been forced to guess at the resilience
of the environment - something each
engineer will do differently.

CST solves this by running tests at the true
scale of the organization, meaning there
is no extrapolation needed to provide a
shared sense of reality.

Automatically resolve any
security issues found

Manual resolution of security bugs is
quickly becoming a legacy process. Today,
when a bug is found from an assessment,
an engineer will open a JIRA ticket and
wait 6-months for the fix, then get called
back in to validate the bug was squashed.
This process will get harder and harder
to maintain as A.I.-driven tools gain
popularity and start finding more bugs than
their human counterparts. Testing needs to
both find issues and engage the defense on
their resolution.

Implications

Security testing is all about the resolution: what can you infer from the results?

Previously, we stated that security testing needs to accomplish two things: establish a
shared reality of the security posture and automatically resolve any found issues. We’ll
explore both below.

19An Argument for Continuous Security Testing

05 Conclusion

Application to the thesis

Continuous security testing should form the base of any security validation strategy.

If the endpoint is the center of the infrastructure universe, testing its defensive posture
should be the base of any testing strategy. This argument was supported by examining the
most competitive strategy today (BAS), comparing it to the methodology of CST, running an
experiment around the effectiveness of continuous testing against popular defenses, and
countering common arguments against autonomous testing.

Removing the human entirely - and leveraging the Law of Large Numbers to spray variable
attack scenarios against endpoint defenses - provides CST with the most modern, and
quantifiable, approach to security testing today.

Main findings

Endpoints, or networked devices running code, represent the core of most environments. An
endpoint is composed of an operating system and the applications or programs running on
it, along with a defensive solution - either built into the endpoint or bolted on as a third-party
application. Endpoints can be laptops, desktops, servers, cameras, televisions, IoT devices,
traffic lights, thermostats, … any device running code.

The purpose of endpoint defense (such as EDR) is to protect the operating system
from malicious behaviors. Therefore, logic would dictate a security testing strategy should
focus on the efficacy of the endpoint defense. There are other angles worth evaluating,
such as packet inspection across the network or credential dumping followed by lateral
movement, which are more informational than efficacy-related. Here, I’ve separated these
into an advanced security posture best suited for manual red team assessments.

Continuous security testing is the state of active testing, at scale, to know with certainty
if your defenses will protect you against emerging threats.

20An Argument for Continuous Security Testing

Advancing your continuous security testing journey

Hopefully these 20+ pages have piqued your interest. If you can believe it, we’ve barely
scratched the surface of CST. Stay curious and use this asset to raise the standard for
control validation and hardening.

For readers that would like another 350+ pages of CST knowledge, consider picking up a
copy Irreducibly Complex Systems at https://www.yellowduckpublishing.com.

If you’re ready to bring continuous security testing to life, I invite you to create a free
account for Prelude Detect - our production-scale continuous security testing platform.
You’ll get access to a library of Verified Security Tests, test authoring tools, and be able to
scale testing to 25 endpoints - for free.

About David Hunt

David Hunt is the co-founder and CTO of Prelude Security,
the company pioneering production-scale continuous security
testing. He leads engineering for Prelude, with responsibility
over the security, engineering, and infrastructure teams.

Prior to Prelude, David was a group lead and principal security engineer at The MITRE
Corporation, where he designed and built the CALDERA framework, an open-source tool
for conducting semi-autonomous purple team assessments. David co-chaired MITRE’s
offensive security-related autonomous decision making research and served on the ATT&CK
technical leadership team. David also led several initiatives with MITRE Engenuity, including
involvement with participants in the Center for Threat Informed Defense (CTID).

Over his 17-year career, David has analyzed security across countless industries, including
enterprise, aerospace, and OT. He is the author of three public and two private security
testing solutions. David has worked for private and public organizations such as Mandiant, Kenna
Security, Vodori, John Deere, Rockwell Collins, Vernon Research, and the U.S. government.

Create your FREE Prelude Detect account

21An Argument for Continuous Security Testing

https://www.yellowduckpublishing.com/
https://platform.preludesecurity.com/detect
https://platform.preludesecurity.com/detect
https://platform.preludesecurity.com/detect

About Prelude Security

Prelude Security allows organizations to know with certainty if their defenses will protect
them against the latest threats. Prelude Detect, the world’s first production-scale continuous
security testing platform, is designed for organizations of all sizes to continuously run security
tests on production machines at scale. Leveraging Prelude’s proprietary, kilobyte-sized
processes called Probes, businesses can safely and continuously test how their defenses
respond to adversarial behavior, CVEs, CISA Advisories, and more across their environments.
The platform integrates with the leading defensive controls and feeds test efficacy data back
to these solutions to create a self-healing defense. This allows customers to ensure their
security infrastructure is properly configured to defend against critical threats. Prelude is
backed by Sequoia Capital, Insight Partners, The MITRE Corporation, CrowdStrike Falcon
Fund, IA Ventures, Four Rivers and other leading investors.

Create your FREE Prelude Detect account

White Paperpreludesecurity.com

https://platform.preludesecurity.com/detect

